An injectable nucleus pulposus cell-modified decellularized scaffold: biocompatible material for prevention of disc degeneration

نویسندگان

  • Zhi Shan
  • Xianfeng Lin
  • Shengyu Wang
  • Xuyang Zhang
  • Yichuan Pang
  • Shengyun Li
  • Tianming Yu
  • Shunwu Fan
  • Fengdong Zhao
چکیده

We developed a nucleus pulposus cell (NPC)-modulated decellularized small intestinal submucosa (SIS) scaffold, and assessed the ability of this material to prevent Intervertebral disc degeneration (IVD) degeneration. Decellularized porcine SIS was squashed into particles and the biological safety and efficiency of these particles were evaluated. Next, SIS particles were seeded with rabbit NPCs, cultured for two months in vitro, decellularized again and suspended for intervertebral injection. We demonstrated that use of the decellularization protocol resulted in the removal of cellular components with maximal retention of extracellular matrix. The xenogeneic decellularized SIS did not display cytotoxicity in vitro and its application prevented NPC degradation. Furthermore, the xenogeneic SIS microparticles were effective in preventing IVD progression in vivo in a rabbit disc degeneration model. In conclusion, our study describes an optimized method for decellularized SIS preparation and demonstrated that the material is safe and effective for treating IVD degeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Creation of an injectable in situ gelling native extracellular matrix for nucleus pulposus tissue engineering.

BACKGROUND CONTEXT Disc degeneration is the leading cause of low back pain and is often characterized by a loss of disc height, resulting from cleavage of chondroitin sulfate proteoglycans (CSPGs) present in the nucleus pulposus. Intact CSPGs are critical to water retention and maintenance of the nucleus osmotic pressure. Decellularization of healthy nucleus pulposus tissue has the potential to...

متن کامل

Determination and comparison of specifics of nucleus pulposus cells of human intervertebral disc in alginate and chitosan–gelatin scaffolds

INTRODUCTION Low back pain is a major economical and social problem nowadays. Intervertebral disc herniation and central degeneration of disc are two major reasons of low back pain that occur because of structural impairment of disc. The intervertebral disc contains three parts as follows : Annulus fibrosus, transitional region, and nucleus pulposus, which forms the central nucleus of the disc....

متن کامل

Thermally Triggered Injectable Hydrogel Which Induces Mesenchymal Stem Cell Differentiation To Promote Regeneration Of The Intervertebral Disc

Introduction: Instability of the motion segment as a result of intervertebral disc (IVD) degeneration is well known as a major cause of low back pain (Balague et al 2011). Degeneration in the central nucleus pulposus (NP) is characterised by a loss of extracellular matrix (ECM) components including proteoglycans particularly aggrecan, and a switch in collagen synthesis from collagen type II to ...

متن کامل

Degenerative Disc Disease: A Review of Cell Technologies and Stem Cell Therapy

Background & Aim: Low back pain is broadly documented as one of the most widespread pathologies in the advanced domain. Although the reasons of low back pain are uncountable, it has been meaningfully related to intervertebral disc degeneration. Present therapies for Intervertebral Disc (IVD) degeneration such as physical therapy and spinal fusion reduce symptoms' severity, but do not treat the ...

متن کامل

Regenerative potential of decellularized porcine nucleus pulposus hydrogel scaffolds: stem cell differentiation, matrix remodeling, and biocompatibility studies.

Nucleus pulposus (NP) tissue regeneration has been proposed as an early stage interventional therapy to combat intervertebral disc degeneration. We have previously reported on the development and characterization of a novel biomimetic acellular porcine NP (APNP) hydrogel. Herein, we aimed to evaluate this material for use as a suitable scaffold for NP tissue regeneration. Human-adipose-derived ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017